Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2760: 253-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468093

RESUMO

Positive selection screens are high-throughput assays to characterize novel enzymes from environmental samples and enrich for more powerful variants from libraries in applications such as biodiversity mining and directed evolution. However, overly stringent selection can limit the power of these screens due to a high false-negative rate. To create a more flexible and less restrictive screen for novel programmable DNA endonucleases, we developed a novel I-SceI-based platform. In this system, mutant E. coli genomes are cleaved upon induction of I-SceI to inhibit cell growth. Growth is rescued in an activity-dependent manner by plasmid curing or cleavage of the I-SceI expression plasmid via endonuclease candidates. More active candidates more readily proliferate and overtake growth of less active variants leading to enrichment. While demonstrated here with Cas9, this protocol can be readily adapted to any programmable DNA endonuclease and used to characterize single candidates or to enrich more powerful variants from pooled candidates or libraries.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , Endonucleases/genética
2.
ACS Synth Biol ; 11(1): 53-60, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007422

RESUMO

Prokaryote genomes encode diverse programmable DNA endonucleases with significant potential for biotechnology and gene editing. However, these endonucleases differ significantly in their properties, which must be screened and measured. While positive selection screens based on ccdB and barnase have been developed to evaluate such proteins, their high levels of toxicity make them challenging to use. Here, we develop and validate a more robust positive selection screen based on the homing endonuclease I-SceI. Candidate endonucleases target and cure the I-SceI expression plasmid preventing induction of I-SceI-mediated double strand DNA breaks that lead to cell death in E. coli. We validated this screen to measure the relative activity of SpCas9, xCas9, and eSpCas9 and demonstrated an ability to enrich for more active endonuclease variants from a mixed population. This system may be applied in high throughput to rapidly characterize novel programmable endonucleases and be adapted for directed evolution of endonuclease function.


Assuntos
Edição de Genes , Proteínas de Saccharomyces cerevisiae , Desoxirribonuclease I , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 49(17): 9926-9937, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34478558

RESUMO

Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.


Assuntos
Proteínas Argonautas/metabolismo , Clivagem do DNA , DNA Bacteriano/metabolismo , Edição de Genes/métodos , Natronobacterium/enzimologia , DNA Helicases/genética , DNA Bacteriano/genética , Escherichia coli/genética , Recombinação Homóloga/genética , Natronobacterium/genética , Natronobacterium/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...